A Self-Position Estimation Algorithm for Multiple Mobile Robots Using Two Omnidirectional Cameras and an Accelerometer
نویسندگان
چکیده
This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale disasters have occurred frequently in Japan. From this, development of the searching robot which supports the rescue team to perform a relief activity at a large-scale disaster is indispensable. Then, this research has developed the searching robot group system with two or more mobile robots. In this research, the searching robot equips with two omnidirectional cameras and an accelerometer. In order to perform distance measurement using two omnidirectional cameras, each parameter of an omnidirectional camera and the position and posture between two omnidirectional cameras have to be calibrated in advance. If there are few mobile robots, the calibration time of each omnidirectional camera does not pose a problem. However, if the calibration is separately performed when using two or more robots in a disaster site, etc., it will take huge calibration time. Then, this paper proposed the algorithm which estimates a mobile robot’s position and the parameter of the position and posture between two omnidirectional cameras simultaneously. The algorithm proposed in this paper extended Nonlinear Transformation (NLT) Method. This paper conducted the simulation experiment to check the validity of the proposed algorithm. In some simulation experiments, one mobile robot moves and observes the circumference of another mobile robot which has stopped at a certain place. This paper verified whether the mobile robot can estimate position using the measurement value when the number of observation times becomes 10 times in π/18 of observation intervals. The result of the simulation shows the effectiveness of the algorithm.
منابع مشابه
A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملFormation Control and Path Planning of Two Robots for Tracking a Moving Target
This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...
متن کاملPath Following and Velocity Optimizing for an Omnidirectional Mobile Robot
In this paper, the path following controller of an omnidirectional mobile robot (OMR) has been extended in such a way that the forward velocity has been optimized and the actuator velocity constraints have been taken into account. Both have been attained through the proposed model predictive control (MPC) framework. The forward velocity has been included into the objective function, while the a...
متن کاملLocalization of Mobile Robots with Omnidirectional Cameras
Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using a omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013